Physics is Grounded in Mathematics

by Eric Steinhart

Mathematics is effective in science. Wigner (1960: 14) regards this effectiveness as magical: “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve.” The prudent reply that it is surely not very scientific to base scientific reasoning on miracles. A more rational alternative says that mathematics is effective in science because physical reality is grounded in mathematical reality.

The Effectiveness Argument goes like this: (1) Mathematics is effective in science. (2) The best explanation for this effectiveness is that physical reality is grounded in mathematical reality. (3) So, by inference to the best explanation, all physical reality, including our universe, is grounded in mathematical reality – in pure mathematics.

The second premise in the Effectiveness Argument is supported by a variety of writers. Dipert (1997: 332) argues that “the very possibility of a clear understanding of the world requires the possibility that it is a simple mathematical structure”. Steiner (1998: 4 – 5) puts it even more powerfully like this:

The strategy physicists pursued . . . to guess at the laws of nature, was a Pythagorean strategy: they used the relations between the structures and even the notations of mathematics to frame analogies and guess according to those analogies. The strategy succeeded. . . . The success of the Pythagorean strategy might lead the reader to conceptual Pythagoreanism, the view that the ultimate properties or ‘real essences’ of things are none other than the mathematical structures and their relations. More radically, one might adopt metaphysical Pythagoreanism, which simply identifies the Universe or the things in it with mathematical objects or structures. (Some physicists write as though an elementary particle just ‘is’ an irreducible group representation, or even that the entire universe is.)

Steiner (1998: ch. 4) brilliantly discusses many examples in which the pythagorean strategy of identifying physical things with mathematical things is successful. His cases include: Maxwell’s study of electromagnetism; Schroedinger’s study of wave mechanics; Dirac’s study of the positron; Schwarzschild’s solution for the equations of general relativity (i.e. black holes); Heisenberg’s study of the symmetries of nucleons; Kemmer’s study of pions; Gell-Mann’s and Ne’eman’s study of particle systems with unitary spin and the consequent discovery of quarks; Einstein’s inference of the field equations for general relativity; the Heisenberg-Born-Jordan derivation of matrix mechanics; Schroedinger’s derivation of the Klein-Gordon equation; the derivation of the Yang-Mills equation; the study of analytic continuations in crossing symmetries.

As a continuation of Steiner’s reasoning, Tegmark (1998: 44) says: “the usefulness of mathematics for describing the physical world is a natural consequence of the fact that the latter is a mathematical structure.” Accordingly, Tegmark (1998: 46-47) simply collapses the distinction between mathematical and physical existence:

One might say that wherever there is light, there are associated ripples in the electromagnetic field. But the modern view is that light is the ripples. One might say that wherever there is matter, there are associated ripples in the metric known as curvature. But Eddington’s view is that matter is the ripples. One might say that wherever there is physical existence, there is an associated mathematical structure. But according to our TOE [theory of everything], physical existence is mathematical existence. (The italics are Tegmark’s.)

Dipert, R. (1997) The mathematical structure of the world: The world as graph. Journal of Philosophy 94 (7), 329-358.

Steiner, M. (1998) The Applicability of Mathematics as a Philosophical Problem. Cambridge, MA: Harvard University Press.

Tegmark, M. (1998) Is ‘the Theory of Everything’ merely the ultimate ensemble theory? Annals of Physics 270, 1-51.

Wigner, E. (1960) The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics 13, 1-14.

Guest Contributor Eric Steinhart is an associate professor of philosophy at William Paterson University. Many of his papers can be found here .

Talk to Me For Free About Philosophy of Love, Philosophy and Suicide, or Nietzsche
7 Exciting Announcements About My Online Philosophy Classes
"The History of Philosophy" and "Philosophy and Suicide"
A Cosmological Argument for an (Atheistic) First Cause
About Daniel Fincke

Dr. Daniel Fincke  has his PhD in philosophy from Fordham University and spent 11 years teaching in college classrooms. He wrote his dissertation on Ethics and the philosophy of Friedrich Nietzsche. On Camels With Hammers, the careful philosophy blog he writes for a popular audience, Dan argues for atheism and develops a humanistic ethical theory he calls “Empowerment Ethics”. Dan also teaches affordable, non-matriculated, video-conferencing philosophy classes on ethics, Nietzsche, historical philosophy, and philosophy for atheists that anyone around the world can sign up for. (You can learn more about Dan’s online classes here.) Dan is an APPA  (American Philosophical Practitioners Association) certified philosophical counselor who offers philosophical advice services to help people work through the philosophical aspects of their practical problems or to work out their views on philosophical issues. (You can read examples of Dan’s advice here.) Through his blogging, his online teaching, and his philosophical advice services each, Dan specializes in helping people who have recently left a religious tradition work out their constructive answers to questions of ethics, metaphysics, the meaning of life, etc. as part of their process of radical worldview change.


CLOSE | X

HIDE | X